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Introduction

There exist random variables whose set of possible values is uncountable.
Two examples are the time that a train arrives at a specified stop and the
lifetime of a transistor.

Let X be such a random variable. We say that X is a continuous random
variable if there exists a nonnegative function f , defined for all real
x ∈ (−∞,∞), having the property that, for any set B of real numbers,

P{X ∈ B} =

∫
B
f (x) dx . (1)

The function f is called the probability density function of the random
variable X .
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Introduction

In words, Equation (1) states that the probability that X will be in B may
be obtained by integrating the probability density function over the set B.
Since X must assume some value, f must satisfy

1 = P{X ∈ (−∞,∞)} =

∫ ∞
−∞

f (x) dx .

All probability statements about X can be answered in terms of f . For
instance, from Equation (1), letting B = [a, b], we obtain

P{a ≤ X ≤ b} =

∫ b

a
f (x) dx . (2)
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Introduction

If we let a = b in Equation (2), we get

P{X = a} =

∫ a

a
f (x) dx = 0.

In words, this equation states that the probability that a continuous
random variable will assume any fixed value is zero. Hence, for a
continuous random variable,

P{X < a} = P{X ≤ a} = F (a) =

∫ a

−∞
f (x) dx .
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Example

Example 1.
Suppose that X is a continuous random variable whose probability density function is given by

f (x) =

{
C(4x − 2x2) 0 < x < 2

0 otherwise.

(a) What is the value of C? (b) Find P{X > 1}.

Solution :

(a) Since f is a probability density function, we must have
∫∞
−∞ f (x)dx = 1, implying that

C
∫ 2

0 (4x − 2x2)dx = 1. hence C = 3
8
.

(b) P{X > 1} =
∫∞

1 f (x)dx = 3
8

∫ 2
1 (4x − 2x2)dx = 1

2
.
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Example

Example 2.

The amount of time in hours that a computer functions before breaking
down is a continuous random variable with probability density function
given by

f (x) =

{
λe−x/100 x ≥ 0

0 x < 0.

What is the probability that

(a) a computer will function between 50 and 150 hours before breaking
down?

(b) it will function for fewer than 100 hours?
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Solution

(a) Since

1 =

∫ ∞
−∞

f (x)dx = λ

∫ ∞
0

e−x/100dx

we obtain

1 = −λ(100)e−x/100
∣∣∣∞
0

= 100λ or λ =
1

100
.

Hence, the probability that a computer will function between 50 and 150 hours before
breaking down is given by

P{50 < X < 150} =

∫ 150

50

1

100
e−x/100dx = −e−x/100

∣∣∣150

50

= e−1/2 − e−3/2 ≈ .384.

(b) Similarly,

P{X < 100} =

∫ 100

0

1

100
e−x/100dx = −e−x/100

∣∣∣100

0
= 1− e−1 ≈ .633.

In other words, approximately 63.3 percent of the time, a computer will fail before
registering 100 hours of use.
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Example

Example 3.
The lifetime in hours of a certain kind of radio tube is a random variable having a probability
density function given by

f (x) =

{
0 x ≤ 100
100
x2 x > 100.

What is the probability that exactly 2 of 5 such tubes in a radio set will have to be replaced
within the first 150 hours of operation? Assume that the events Ei , i = 1, 2, 3, 4, 5, that the ith
such tube will have to be replaced within this time are independent.

Solution: From the statement of the problem, we have

P(Ei ) =

∫ 150

0
f (x)dx = 100

∫ 150

100
x−2dx =

1

3
.

Hence, from the independence of the events Ei , it follows that the desired probability is

(
5
2

)(
1

3

)2 (2

3

)3

=
80

243
.
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Relationship between the cumulative distribution F and
the probability density f

The relationship between the cumulative distribution F and the probability density f is expressed
by

F (a) = P{X ∈ (−∞, a]} =

∫ a

−∞
f (x) dx .

Differentiating both sides of the preceding equation yields

d

da
F (a) = f (a).

That is, the density is the derivative of the cumulative distribution function. A somewhat more
intuitive interpretation of the density function may be obtained from Equation (2) as follows:

P
{
a−

ε

2
≤ X ≤ a +

ε

2

}
=

∫ a+ε/2

a−ε/2
f (x) dx ≈ εf (a)

when ε is small and when f (·) is continuous at x = a. In other words, the probability that X will
be contained in an interval of length ε around the point a is approximately εf (a). From this
result we see that f (a) is a measure of how likely it is that the random variable will be near a.
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Example

Example 4.
If X is continuous with distribution function FX and density function fX , find the density
function of Y = 2X.

Solution: We will determine fY in two ways. The first way is to derive, and then differentiate,
the distribution function of Y :

FY (a) = P{Y ≤ a} = P{2X ≤ a} = P{X ≤ a/2} = FX (a/2).

Differentiation gives

fY (a) =
1

2
fX (a/2).

Another way to determine fY is to note that

εfY (a) ≈ P{a−
ε

2
≤ Y ≤ a +

ε

2
} = P{a−

ε

2
≤ 2X ≤ a +

ε

2
}

= P{
a

2
−
ε

4
≤ X ≤

a

2
+
ε

4
} ≈

ε

2
fX (a/2).

Dividing through by ε gives the same result as before.
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Expectation and Variance of Continuous Random Variables

If X is a continuous random variable having probability density function f (x), then, because

f (x)dx ≈ P{x ≤ X ≤ x + dx} for dx small

it is easy to see that the analogous definition is to define the expected value of X by

E [X ] =

∫ ∞
−∞

xf (x) dx .

Example 5.

Find E [X ] when the density function of X is

f (x) =

{
2x if 0 ≤ x ≤ 1

0 otherwise.

Solution:

E [X ] =

∫ 1

0
xf (x)dx =

∫ 1

0
2x2dx =

2

3
.
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Example

Example 6.

The density function of X is given by f (x) =

{
1 if 0 ≤ x ≤ 1

0 otherwise.
Find E [eX ].

Solution: Let Y = eX . We start by determining FY , the probability distribution function of Y .
Now, for 1 ≤ x ≤ e,

FY (x) = P{Y ≤ x} = P{eX ≤ x} = P{X ≤ log(x)}

=

∫ log(x)

0
f (y)dy = log(x).

By differentiating FY (x), we can conclude that the probability density function of Y is given by

fY (x) =
1

x
, 1 ≤ x ≤ e.

Hence,

E [eX ] = E [Y ] =

∫ ∞
−∞

xfY (x)dx =

∫ e

1
dx = e − 1.
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Proposition

Proposition 7.

If X is a continuous random variable with probability density function f (x), then, for any
real-valued function g,

E [g(X )] =

∫ ∞
−∞

g(x)f (x) dx .

An application of Proposition (7) to Example (6) yields

E [eX ] =

∫ 1

0
exdx since f (x) = 1, 0 < x < 1

= e − 1

which is in accord with the result obtained in that example.

The proof of Proposition (7) is more involved than that of its discrete random variable analog.
We will present such a proof under the provision that the random variable g(X ) is nonnegative.
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Lemma

We will need the following lemma, which is of independent interest.

Lemma 8.

For a nonnegative random variable Y ,

E [Y ] =

∫ ∞
0

P{Y > y} dy .

Proof: We present a proof when Y is a continuous random variable with probability density
function fY . We have ∫ ∞

0
P{Y > y}dy =

∫ ∞
0

∫ ∞
y

fY (x) dxdy

where we have used the fact that P{Y > y} =
∫∞
y fY (x) dx . Interchanging the order of

integration in the preceding equation yields∫ ∞
0

P{Y > y}dy =

∫ ∞
0

(∫ x

0
dy

)
fY (x) dx

=

∫ ∞
0

xfY (x) dx

= E [Y ].
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Proof of Proposition (7)

From Lemma (8), for any function g for which g(x) ≥ 0,

E [g(X )] =

∫ ∞
0

P{g(X ) > y} dy

=

∫ ∞
0

∫
x :g(x)>y

f (x) dx dy

=

∫
x :g(x)>0

∫ g(x)

0
dy f (x) dx

=

∫
x :g(x)>0

g(x)f (x) dx

which completes the proof.
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Example

Example 9.
A stick of length 1 is split at a point U that is uniformly distributed over (0, 1). Determine the
expected length of the piece that contains the point p, 0 ≤ p ≤ 1.

Solution: Let Lp(U) denote the length of the substick that contains the point p, and note that

Lp(U) =

{
1− U U < p

U U > p.

Substick containing point p: (a) U < p; (b) U > p.

Hence, from Proposition (7),

E [Lp(U)] =

∫ 1

0
Lp(u)du =

∫ p

0
(1− u)du +

∫ 1

p
udu =

1

2
−

(1− p)2

2
+

1

2
−

p2

2
=

1

2
+ p(1− p).

Since p(1− p) is maximized when p = 1
2

, it is interesting to note that the expected length of
the substick containing the point p is maximized when p is the midpoint of the original stick.
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Example

Example 10.

Suppose that if you are s minutes early for an appointment, then you incur
the cost cs, and if you are s minutes late, then you incur the cost ks.
Suppose also that the travel time from where you presently are to the
location of your appointment is a continuous random variable having
probability density function f . Determine the time at which you should
depart if you want to minimize your expected cost.

Solution: Let X denote the travel time. If you leave t minutes before your
appointment, then your cost, call it Ct(X ), is given by

Ct(X ) =

{
c(t − X ) if X ≤ t

k(X − t) if X ≥ t.
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Solution (Contd...)

Therefore,

E [Ct(X )] =

∫ ∞
0

Ct(x)f (x)dx

=

∫ t

0
c(t − x)f (x)dx +

∫ ∞
t

k(x − t)f (x)dx

= ct

∫ t

0
f (x)dx − c

∫ t

0
xf (x)dx + k

∫ ∞
t

xf (x)dx − kt

∫ ∞
t

f (x)dx .

The value of t that minimizes E [Ct(X )] can now be obtained by calculus. Differentiation yields

d

dt
E [Ct(X )] = ctf (t) + cF (t)− ctf (t)− ktf (t) + ktf (t)− k[1− F (t)]

= (k + c)F (t)− k.

Equating the rightmost side to zero shows that the minimal expected cost is obtained when you
leave t∗ minutes before your appointment, where t∗ satisfies

F (t∗) =
k

k + c
.
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Corollary

Corollary 11.
If a and b are constants, then

E [aX + b] = aE [X ] + b.

The proof of Corollary (19) for a continuous random variable X is the same as the one given for
a discrete random variable. The only modification is that the sum is replaced by an integral and
the probability mass function by a probability density function.
The variance of a continuous random variable is defined exactly as it is for a discrete random
variable, namely, if X is a random variable with expected value µ, then the variance of X is
defined (for any type of random variable) by

Var(X ) = E [(X − µ)2].

The alternative formula,
Var(X ) = E [X 2]− (E [X ])2

is established in a manner similar to its counterpart in the discrete case.
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Example

Example 12.
Find Var(X ) for X as given in Example (5).

Solution: We first compute E [X 2] :

E [X 2] =

∫ ∞
−∞

x2f (x)dx =

∫ 1

0
2x3dx =

1

2
.

Hence, since E [X ] = 2
3

, we obtain

Var(X ) =
1

2
−
(

2

3

)2

=
1

18
.

It can be shown that, for constants a and b, Var(aX + b) = a2Var(X ). The proof mimics the
one given for discrete random variables.
There are several important classes of continuous random variables that appear frequently in
applications of probability.

We shall now discuss some of them.
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The Uniform Random Variable

A random variable is said to be uniformly distributed over the interval (0, 1) if its probability
density function is given by

f (x) =

{
1 0 < x < 1

0 otherwise.
(3)

Note that Equation (3) is a density function, since f (x) ≥ 0 and
∫∞
−∞ f (x)dx =

∫ 1
0 dx = 1.

Because f (x) > 0 only when x ∈ (0, 1), it follows that X must assume a value in interval (0, 1).
Also, since f (x) is constant for x ∈ (0, 1), X is just as likely to be near any value in (0, 1) as it is
to be near any other value.

To verify this statement, note that, for any 0 < a < b < 1,

P{a ≤ X ≤ b} =

∫ b

a
f (x)dx = b − a.

In other words, the probability that X is in any particular subinterval of (0, 1) equals the length
of that subinterval.

In general, we say that X is a uniform random variable on the interval (α, β) if the probability
density function of X is given by

f (x) =

{
1

β−α if α < x < β

0 otherwise.
(4)
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The Uniform Random Variable

Since F (a) =
∫ a
−∞ f (x)dx , it follows from Equation (4) that the

distribution function of a uniform random variable on the interval (α, β) is
given by

F (a) =


0 a ≤ α
a−α
β−α α < a < β

1 a ≥ β.

The following figure presents a graph of f (a) and F (a).

Graph of (a) f(a) and (b) F(a) for a uniform (α, β) random variable.
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Example

Example 13.

Let X be uniformly distributed over (α, β). Find (a) E [X ] and (b) Var(X ).

Solution: (a)

E [X ] =

∫ ∞
−∞

xf (x)dx =

∫ β

α

x

β − α
dx

=
β2 − α2

2(β − α)
=
β + α

2
.

In words, the expected value of a random variable that is uniformly
distributed over some interval is equal to the midpoint of that interval.
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Solution (Contd...)

To find Var(X ), we first calculate E [X 2].

E [X 2] =

∫ β

α

1

β − α
x2dx

=
β3 − α3

3(β − α)
=
β2 + αβ + α2

3
.

Hence,

Var(X ) =
β2 + αβ + α2

3
− (α + β)2

4
=

(β − α)2

12
.

Therefore, the variance of a random variable that is uniformly distributed
over some interval is the square of the length of that interval divided by 12.
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Example

Example 14.

If X is uniformly distributed over (0, 10), calculate the probability that
(a) X < 3, (b) X > 6, and (c) 3 < X < 8.

Solution:

(a) P{X < 3} =
∫ 3

0
1

10dx = 3
10

(b) P{X > 6} =
∫ 10

6
1

10dx = 4
10

(c) P{3 < X < 8} =
∫ 8

3
1

10dx = 1
2 .
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Example

Example 15.
Buses arrive at a specified stop at 15-minute intervals starting at 7 A.M. That is, they arrive at
7, 7 : 15, 7 : 30, 7 : 45, and so on. If a passenger arrives at the stop at a time that is uniformly
distributed between 7 and 7 : 30, find the probability that he waits

(a) less than 5 minutes for a bus;

(b) more than 10 minutes for a bus.

Solution: Let X denote the number of minutes past 7 that the passenger arrives at the stop.
Since X is a uniform random variable over the interval (0, 30), it follows that the passenger will
have to wait less than 5 minutes if (and only if) he arrives between 7 : 10 and 7 : 15 or between
7 : 25 and 7 : 30. Hence, the desired probability for part (a) is

P{10 < X < 15}+ P{25 < X < 30} =

∫ 15

10

1

30
dx +

∫ 30

25

1

30
dx =

1

3
.

Similarly, he would have to wait more than 10 minutes if he arrives between 7 and 7 : 05 or
between 7 : 15 and 7 : 20, so the probability for part (b) is

P{0 < X < 5}+ P{15 < X < 20} =
1

3
.
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Normal Random Variables

We say that X is a normal random variable, or simply that X is normally distributed, with
parameters µ and σ2 if the density of X is given by

f (x) =
1

σ
√

2π
e−(x−µ)2/2σ2

−∞ < x <∞.

This density function is a bell-shaped curve that is symmetric about µ.

Normal density function: (a) µ = 0, σ = 1; (b) arbitrary µ, σ2.
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Normal Random Variables

The normal distribution was introduced by the French mathematician Abraham DeMoivre in
1733, who used it to approximate probabilities associated with binomial random variables when
the binomial parameter n is large. This result was later extended by Laplace and others and is
now encompassed in a probability theorem known as the central limit theorem.

The central limit theorem, one of the two most important results in probability theory, gives a

theoretical base to the often noted empirical observation that, in practice, many random

phenomena obey, at least approximately, a normal probability distribution. Some examples of

random phenomena obeying this behavior are the height of a man, the velocity in any direction

of a molecule in gas, and the error made in measuring a physical quantity.
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Normal Random Variables

To prove that f (x) is indeed a probability density function, we need to show that

1

σ
√

2π

∫ ∞
−∞

e−(x−µ)2/2σ2
dx = 1.

Making the substitution y = (x − µ)/σ, we see that

1

σ
√

2π

∫ ∞
−∞

e−(x−µ)2/2σ2
dx =

1
√

2π

∫ ∞
−∞

e−y2/2dy .

Hence, we must show that ∫ ∞
−∞

e−y2/2dy =
√

2π.

Toward this end, let I =
∫∞
−∞ e−y2/2dy . Then

I 2 =

∫ ∞
−∞

e−y2/2dy

∫ ∞
−∞

e−x2/2dx

=

∫ ∞
−∞

∫ ∞
−∞

e−(y2+x2)/2dydx .
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Normal Random Variables

We now evaluate the double integral by means of a change of variables to polar coordinates.
(That is, let x = r cos θ, y = r sin θ, and dydx = rdθdr .) Thus,

I 2 =

∫ ∞
0

∫ 2π

0
e−r2/2rdθdr

= 2π

∫ ∞
0

re−r2/2dr

= −2πe−r2/2
∣∣∣∞
0

= 2π.

Hence, I =
√

2π, and the result is proved.
An important fact about normal random variables is that if X is normally distributed with
parameters µ and σ2, then Y = aX + b is normally distributed with parameters aµ+ b and
a2σ2. To prove this statement, suppose that a > 0. (The proof when a < 0 is similar.) Let FY

denote the cumulative distribution function of Y . Then

FY (x) = P{Y ≤ x} = P{aX + b ≤ x}

= P{X ≤
x − b

a
} = FX

(
x − b

a

)
where FX is the cumulative distribution function of X .
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Normal Random Variables

By differentiation, the density function of Y is then

fY (x) =
1

a
fX

(
x − b

a

)
=

1

aσ
√

2π
exp{−

(
x − b

a
− µ

)2

/2σ2}

=
1

aσ
√

2π
exp{−(x − b − aµ)2/2(aσ)2}

which shows that Y is normal with parameters aµ+ b and a2σ2.
An important implication of the preceding result is that if X is normally distributed with
parameters µ and σ2, then Z = (X − µ)/σ is normally distributed with parameters 0 and 1.
Such a random variable is said to be a standard, or a unit, normal random variable.

We now show that the parameters µ and σ2 of a normal random variable represent, respectively,
its expected value and variance.
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Example

Example 16.

Find E [X ] and Var(X ) when X is a normal random variable with parameters µ and σ2.

Solution: Let us start by finding the mean and variance of the standard normal random variable
Z = (X − µ)/σ. We have

E [Z ] =

∫ ∞
−∞

xfZ (x)dx

=
1
√

2π

∫ ∞
−∞

xe−x2/2dx

= −
1
√

2π
e−x2/2

∣∣∣∞
−∞

= 0.

Thus,

Var(Z) = E [Z2]

=
1
√

2π

∫ ∞
−∞

x2e−x2/2dx .
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Solution (Contd...)

Integration by parts (with u = x and dv = xe−x2/2) now gives

Var(Z) =
1
√

2π
(−xe−x2/2

∣∣∣∞
−∞

+

∫ ∞
−∞

e−x2/2dx)

=
1
√

2π

∫ ∞
−∞

e−x2/2dx

= 1.

Because X = µ+ σZ , the preceding yields the results

E [X ] = µ+ σE [Z ] = µ

and
Var(X ) = σ2Var(Z) = σ2.

It is customary to denote the cumulative distribution function of a standard normal random
variable by Φ(x). That is,

Φ(x) =
1
√

2π

∫ x

−∞
e−y2/2dy .
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Solution (Contd...)

The values of Φ(x) for nonnegative x are given in the following table. For
negative values of x , Φ(x) can be obtained from the relationship

Φ(−x) = 1− Φ(x), −∞ < x <∞. (5)

The proof of Equation (5), which follows from the symmetry of the
standard normal density. This equation states that if Z is a standard
normal random variable, then

P{Z ≤ −x} = P{Z > x}, −∞ < x <∞.

Since Z = (X − µ)/σ is a standard normal random variable whenever X is
normally distributed with parameters µ and σ2, it follows that the
distribution function of X can be expressed as

FX (a) = P{X ≤ a} = P

(
X − µ
σ

≤ a− µ
σ

)
= Φ

(
a− µ
σ

)
.
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Table for Standard Normal Curve
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Example

Example 17.

If X is a normal random variable with parameters µ = 3 and σ2 = 9, find
(a) P{2 < X < 5}; (b) P{X > 0}; (c) P{|X − 3| > 6}.

Solution: (a)

P{2 < X < 5} = P

{
2− 3

3
<

X − 3

3
<

5− 3

3

}
= P

{
−1

3
< Z <

2

3

}
= Φ

(
2

3

)
− Φ

(
−1

3

)
= Φ

(
2

3

)
−
[

1− Φ

(
1

3

)]
≈ .3779.
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Solution (Contd...)

(b)

P{X > 0} = P

{
X − 3

3
>

0− 3

3

}
= P{Z > −1}

= 1− Φ(−1)

= Φ(1)

≈ .8413.

(c)

P{|X − 3| > 6} = P{X > 9}+ P{X < −3}

= P

{
X − 3

3
>

9− 3

3

}
+ P

{
X − 3

3
<
−3− 3

3

}
= P{Z > 2}+ P{Z < −2}
= 1− Φ(2) + Φ(−2)

= 2[1− Φ(2)]

≈ .0456.
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Example

Example 18.
An examination is frequently regarded as being good (in the sense of determining a valid grade
spread for those taking it) if the test scores of those taking the examination can be
approximated by a normal density function. (In other words, a graph of the frequency of grade
scores should have approximately the bell-shaped form of the normal density.) The instructor
often uses the test scores to estimate the normal parameters µ and σ2 and then assigns the
letter grade A to those whose test score is greater than µ+ σ, B to those whose score is
between µ and µ+ σ, C to those whose score is between µ− σ and µ, D to those whose score
is between µ− 2σ and µ− σ, and F to those getting a score below µ− 2σ. (This strategy is
sometimes referred to as grading “on the curve.”)

Solution :

P{X > µ+ σ} = P

{
X − µ
σ

> 1

}
= 1− Φ(1) ≈ .1587.

P{µ < X < µ+ σ} = P

{
0 <

X − µ
σ

< 1

}
= Φ(1)− Φ(0) ≈ .3413.

P{µ− σ < X < µ} = P

{
−1 <

X − µ
σ

< 0

}
= Φ(0)− Φ(−1) ≈ .3413.
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Example (Contd...)

P{µ− 2σ < X < µ− σ} = P{−2 <
X − µ
σ

< −1}

= Φ(2)− Φ(1) ≈ .1359.

P{X < µ− 2σ} = P

{
X − µ
σ

< −2

}
= Φ(−2) ≈ .0228.

It follows that approximately 16 percent of the class will receive an A
grade on the examination, 34 percent a B grade, 34 percent a C grade,
and 14 percent a D grade; 2 percent will fail.
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Example

Example 19.
An expert witness in a paternity suit testifies that the length (in days) of human gestation is
approximately normally distributed with parameters µ = 270 and σ2 = 100. The defendant in
the suit is able to prove that he was out of the country during a period that began 290 days
before the birth of the child and ended 240 days before the birth. If the defendant was, in fact,
the father of the child, what is the probability that the mother could have had the very long or
very short gestation indicated by the testimony?

Solution: Let X denote the length of the gestation, and assume that the defendant is the
father. Then the probability that the birth could occur within the indicated period is

P{X > 290 or X < 240} = P{X > 290}+ P{X < 240}

= P

{
X − 270

10
> 2

}
+ P

{
X − 270

10
< −3

}
= 1− Φ(2) + 1− Φ(3)

≈ .0241.

P. Sam Johnson Continuous Random Variables 40/106



Example

Example 20.

Suppose that a binary message, either 0 or 1, must be transmitted by wire
from location A to location B. However, the data sent over the wire are
subject to a channel noise disturbance, so, to reduce the possibility of error,
the value 2 is sent over the wire when the message is 1 and the value −2
is sent when the message is 0. If x, x = ±2, is the value sent at location
A, then R, the value received at location B, is given by R = x + N, where
N is the channel noise disturbance. When the message is received at
location B, the receiver decodes it according to the following rule:
If R ≥ .5, then 1 is concluded.
If R < .5, then 0 is concluded.
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Example (contd...)

Because the channel noise is often normally distributed, we will determine
the error probabilities when N is a standard normal random variable.
Two types of errors can occur: One is that the message 1 can be
incorrectly determined to be 0, and the other is that 0 can be incorrectly
determined to be 1. The first type of error will occur if the message is 1
and 2 + N < .5, whereas the second will occur if the message is 0 and
−2 + N ≥ .5. Hence,

P{error|message is 1} = P{N < −1.5}
= 1− Φ(1.5) ≈ .0668

and

P{error|message is 0} = P{N ≥ 2.5}
= 1− Φ(2.5) ≈ .0062.
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The Normal Approximation to The Binomial Distribution

An important result in probability theory known as the DeMoivre-Laplace
limit theorem states that when n is large, a binomial random variable with
parameters n and p will have approximately the same distribution as a
normal random variable with the same mean and variance as the binomial.

This result was proved originally for the special case of p = 1
2 by DeMoivre

in 1733 and was then extended to general p by Laplace in 1812. It
formally states that if we “standardize” the binomial by first subtracting
its mean np and then dividing the result by its standard deviation√
np(1− p), then the distribution function of this standardized random

variable (which has mean 0 and variance 1) will converge to the standard
normal distribution function as n→∞.
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The DeMoivre-Laplace Limit Theorem

Theorem 21.

If Sn denotes the number of successes that occur when n independent
trials, each resulting in a success with probability p, are performed, then,
for any a < b,

P

{
a ≤ Sn − np√

np(1− p)
≤ b

}
→ Φ(b)− Φ(a)

as n→∞.

Because the preceding theorem is only a special case of the central limit
theorem, we shall not present a proof.

P. Sam Johnson Continuous Random Variables 44/106



The DeMoivre-Laplace Limit Theorem

Note that we now have two possible approximations to binomial
probabilities: the Poisson approximation, which is good when n is large
and p is small, and the normal approximation, which can be shown to be
quite good when np(1− p) is large.

The normal approximation will, in general, be quite good for values of n
satisfying np(1− p) ≥ 10.
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Normal Approximation

The probability mass function of a binomial (n, p) random variable
becomes more and more “normal” as n becomes larger and larger.
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Example

Example 22.
Let X be the number of times that a fair coin that is flipped 40 times lands on heads. Find the
probability that X = 20. Use the normal approximation and then compare it with the exact
solution.

Solution : To employ the normal approximation, note that because the binomial is a discrete
integer-valued random variable, whereas the normal is a continuous random variable, it is best
to write P{X = i} as P{i − 1/2 < X < i + 1/2} before applying the normal approximation (this
is called the continuity correction). Doing so gives

P{X = 20} = P{19.5 ≤ X < 20.5}

= P

{
19.5− 20
√

10
<

X − 20
√

10
<

20.5− 20
√

10

}
≈ P

{
−.16 <

X − 20
√

10
< .16

}
≈ Φ(.16)− Φ(−.16) ≈ .1272.

The exact result is

P{X = 20} =

(
40
20

)(
1

2

)40

≈ .1254.
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Example

Example 23.
The ideal size of a first-year class at a particular college is 150 students. The college, knowing
from past experience that, on the average, only 30 percent of those accepted for admission will
actually attend, uses a policy of approving the applications of 450 students. Compute the
probability that more than 150 first-year students attend this college.

Solution: If X denotes the number of students that attend, then X is a binomial random
variable with parameters n = 450 and p = .3. Using the continuity correction, we see that the
normal approximation yields

P{X ≥ 150.5} = P

{
X − (450)(.3)√

450(.3)(.7)
≥

150.5− (450)(.3)√
450(.3)(.7)

}
≈ 1− Φ(1.59)

≈ .0559.

Hence, less than 6 percent of the time do more than 150 of the first 450 accepted actually

attend.

P. Sam Johnson Continuous Random Variables 48/106



Example

Example 24.
To determine the effectiveness of a certain diet in reducing the amount of cholesterol in the
bloodstream, 100 people are put on the diet. After they have been on the diet for a sufficient
length of time, their cholesterol count will be taken. The nutritionist running this experiment
has decided to endorse the diet if at least 65 percent of the people have a lower cholesterol
count after going on the diet. What is the probability that the nutritionist endorses the new diet
if, in fact, it has no effect on the cholesterol level?

Solution. Let us assume that if the diet has no effect on the cholesterol count, then, strictly by
chance, each person’s count will be lower than it was before the diet with probability 1

2
. Hence,

if X is the number of people whose count is lowered, then the probability that the nutritionist
will endorse the diet when it actually has no effect on the cholesterol count is

100∑
i=65

(
100
i

)(
1

2

)100

= P{X ≥ 64.5}

= P

{
x − (100)( 1

2
)√

100( 1
2

)( 1
2

)
≥ 2.9

}

≈ 1− Φ(2.9)

≈ .0019.
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Example

Example 25.
Fifty-two percent of the residents of New York City are in favor of outlawing cigarette smoking
in publicly owned areas. Approximate the probability that more than 50 percent of a random
sample of n people from New York are in favor of this prohibition when

(a) n = 11

(b) n = 101

(c) n = 1001

How large would n have to be to make this probability exceed .95?

Solution. Let N denote the number of residents of New York City. To answer the preceding
question, we must first understand that a random sample of size n is a sample such that the n

people were chosen in such a manner that each of the

(
N
n

)
subsets of n people had the same

chance of being the chosen subset. Consequently, Sn, the number of people in the sample who
are in favor of the smoking prohibition, is a hypergeometric random variable. That is, Sn has the
same distribution as the number of white balls obtained when n balls are chosen from an urn of
N balls, of which .52N are white. But because N and .52N are both large in comparison with
the sample size n, it follows from the binomial approximation to the hypergeometric that the
distribution of Sn is closely approximated by a binomial distribution with parameters n and
p = .52.
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Example (contd...)

The normal approximation to the binomial distribution then shows that

P{Sn > .5n} = P

{
Sn − .52n√
n(.52)(.48)

>
.5n − .52n√
n(.52)(.48)

}

= P

{
Sn − .52n√
n(.52)(.48)

> −.04
√
n

}
≈ Φ(.04

√
n).

Thus,

P{Sn > .5n} ≈


Φ(.1328) = .5528, if n = 11

Φ(.4020) = .6562, if n = 101

Φ(1.2665) = .8973, if n = 1001.

In order for this probability to be at least .95, we would need Φ(.04
√
n) > .95. Because Φ(x) is

an increasing function and Φ(1.645) = .95, this means that

.04
√
n > 1.645 or n ≥ 1691.266

That is, the sample size would have to be at least 1692.
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Exponential Random Variables

A continuous random variable whose probability density function is given,
for some λ > 0, by

f (x) =

{
λe−λx if x ≥ 0

0 if x < 0

is said to be an exponential random variable (or, more simply, is said to be
exponentially distributed) with parameter λ. The cumulative distribution
function F (a) of an exponential random variable is given by

F (a) = P{X ≤ a} =

∫ a

0
λe−λxdx = 1− e−λa, a ≥ 0.

Note that F (∞) =
∫∞

0 λe−λxdx = 1, as, of course, it must. The
parameter λ will now be shown to equal the reciprocal of the expected
value.
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Example

Example 26.

Let X be an exponential random variable with parameter λ. Calculate
(a)E [X ] and (b)Var(X ).

Solution. (a) Since the density function is given by

f (x) =

{
λe−λx x ≥ 0

0 x < 0

we obtain, for n > 0,

E [X n] =

∫ ∞
0

xnλe−λxdx .
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Example (contd...)

Integrating by parts (with λe−λx = dv and u = xn) yields

E [X n] = xne−λx |∞0 +

∫ ∞
0

e−λxnxn−1dx

= 0 +
n

λ

∫ ∞
0

λe−λxxn−1dx =
n

λ
E [X n−1].

Letting n = 1 and then n = 2 gives

E [X ] =
1

λ
, E [X 2] =

2

λ
E [X ] =

2

λ2
.

(b) Hence

Var(X ) =
2

λ2
−
(

1

λ

)2

=
1

λ2
.

Thus, the mean of the exponential is the reciprocal of its parameter λ, and
the variance is the mean squared.
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Exponential Distribution

In practice, the exponential distribution often arises as the distribution of
the amount of time until some specific event occurs.

For instance, the amount of time (starting from now) until an earthquake
occurs, or until a new war breaks out, or until a telephone call you receive
turns out to be a wrong number are all random variables that tend in
practice to have exponential distributions.
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Example

Example 27.

Suppose that the length of a phone call in minutes is an exponential
random variable with parameter λ = 1

10 . If someone arrives immediately
ahead of you at a public telephone booth, find the probability that you will
have to wait

1. more than 10 minutes;

2. between 10 and 20 minutes.

Solution. Let X denote the length of the call made by the person in the
booth. Then the desired probabilities are

(a) P{X > 10} = 1− F (10) = e−1 ≈ .368.

(b) P{10 < X < 20} = F (20)− F (10) = e−1 − e−2 ≈ .233.
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Memoryless non-negative random variable

We say that a nonnegative random variable X is memoryless if

P{X > s + t|X > t} = P{X > s} for all s, t ≥ 0 (6)

If we think of X as being the lifetime of some instrument, Equation 6 states that the probability
that the instrument survives for at least s + t hours, given that it has survived t hours, is the
same as the initial probability that it survives for at least s hours.

In other words, if the instrument is alive at age t, the distribution of the remaining amount of
time that it survives is the same as the original lifetime distribution. (That is, it is as if the
instrument does not “remember” that it has already been in use for a time t.)

P{X > s + t,X > t}
P{X > t}

= P{X > s}

or
P{X > s + t} = P{X > s}P{X > t} (7)

Since Equation (7) is satisfied when X is exponentially distributed (for e−λ(s+t) = e−λse−λt),

it follows that exponentially distributed random variables are memoryless.
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Memoryless non-negative random variable

Example 28.
Consider a post office that is staffed by two clerks. Suppose that when Mr. Smith enters the
system, he discovers that Ms. Jones is being served by one of the clerks and Mr. Brown by the
other. Suppose also that Mr. Smith is told that his service will begin as soon as either Ms.
Jones or Mr. Brown leaves. If the amount of time that a clerk spends with a customer is
exponentially distributed with parameter λ, what is the probability that, of the three customers,
Mr. Smith is the last to leave the post office?

Solution : The answer is obtained by reasoning as follows: Consider the time at which Mr.
Smith first finds a free clerk. At this point, either Ms. Jones or Mr. Brown would have just left,
and the other one would still be in service.

However, because the exponential is memoryless, it follows that the additional amount of time
that this other person (either Ms. Jones or Mr. Brown) would still have to spend in the post
office is exponentially distributed with parameter λ. That is, it is the same as if service for that
person were just starting at this point. Hence, by symmetry, the probability that the remaining
person finishes before Smith leaves must equal 1

2
.
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Example

It turns out that not only is the exponential distribution memoryless, but it is also the unique
distribution possessing this property. To see this, suppose that X is memoryless and let
F (x) = P{X > x}. Then, F (s + t) = F (s)F (t). That is, F () satisfies the functional equation
g(s + t) = g(s)g(t). However, it turns out that the only right continuous solution of this
functional equation is1

g(x) = e−λx (8)

and, since a distribution function is always right continuous, we must have F (x) = e−λx or

F (x) = P{X ≤ x} = 1− e−λx which shows that X is exponentially distributed.

1One can prove Equation (8) as follows: If g(s + t) = g(s)g(t), then

g

(
2

n

)
= g

(
1

n
+

1

n

)
= g2

(
1

n

)
and repeating this yields g(m/n) = gm(1/n). Also,

g(1) = g

(
1

n
+

1

n
+ · · ·+

1

n

)
= gn

(
1

n

)
or g

(
1

n

)
= (g(1))1/n

Hence, g(m/n) = (g(1))m/n, which, since g is right continuous, implies that g(x) = (g(1))x .

Because g(1) =
(
g
(

1
2

))2 ≥ 0, we obtain g(x) = e−λx , where λ = − log(g(1)).
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Laplace Distribution

A variation of the exponential distribution is the distribution of a random
variable that is equally likely to be either positive or negative and whose
absolute value is exponentially distributed with parameter λ, λ ≥ 0. Such
a random variable is said to have a Laplace distribution,2 and its density is
given by

f (x) =
1

2
λe−λ|x | −∞ < x <∞.

Its distribution function is given by

F (x) =


1
2

x∫
−∞

λeλxdx x < 0

1
2

0∫
−∞

λeλxdx + 1
2

x∫
0

λe−λxdx x > 0

=

{
1
2e
λx x < 0

1− 1
2e
−λx x > 0.

2It also is sometimes called the double exponential random variable.
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Example

Example 29.
Consider again Example (20), which supposes that a binary message is to be transmitted from A
to B, with the value 2 being sent when the message is 1 and −2 when it is 0. However, suppose
now that, rather than being a standard normal random variable, the channel noise N is a
Laplacian random variable with parameter λ = 1. Suppose again that if R is the value received
at location B, then the message is decoded as follows:
If R ≥ .5, then 1 is concluded.
If R < .5, then 0 is concluded.

In this case, where the noise is Laplacian with parameter λ = 1, the two types of errors will have
probabilities given by

P{error|message 1 is sent} = P{N < −1.5} =
1

2
e−1.5 ≈ .1116.

P{error|message 0 is sent} = P{N ≥ 2.5} =
1

2
e−2.5 ≈ .041.

On comparing this with the results of Example (20), we see that the error probabilities are

higher when the noise is Laplacian with λ = 1 than when it is a standard normal variable.

P. Sam Johnson Continuous Random Variables 61/106



Hazard Rate Functions

Consider a positive continuous random variable X that we interpret as being the lifetime of
some item. Let X have distribution function F and density f . The hazard rate (sometimes
called the failure rate) function λ(t) of F is defined by

λ(t) =
f (t)

F (t)
, whereF = 1− F .

To interpret λ(t), suppose that the item has survived for a time t and we desire the probability
that it will not survive for an additional time dt. That is, consider P{X ∈ (t, t + dt)|X > t}.
Now,

P{X ∈ (t, t + dt)|X > t} =
P{X ∈ (t, t + dt),X > t}

P{X > t}

=
P{X ∈ (t, t + dt)}

P{X > t}

≈
f (t)

F (t)
dt.

Thus, λ(t) represents the conditional probability intensity that a t-unit-old item will fail.
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Hazard Rate Functions

Suppose now that the lifetime distribution is exponential. Then, by the memoryless property, it
follows that the distribution of remaining life for a t-year-old item is the same as that for a new
item. Hence, λ(t) should be constant. In fact, this checks out, since

λ(t) =
f (t)

F (t)
=
λe−λt

e−λt
= λ.

Thus, the failure rate function for the exponential distribution is constant. The parameter λ is
often referred to as the rate of the distribution.
It turns out that the failure rate function λ(t) uniquely determines the distribution F . To prove
this, note that, by definition,

λ(t) =
d
dt
F (t)

1− F (t)
.

Integrating both sides yields

log(1− F (t)) = −
∫ t

0
λ(t)dt + k

or

1− F (t) = ek exp

{
−
∫ t

0
λ(t)dt

}
.
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Hazard Rate Functions

Letting t = 0 shows that k = 0; thus,

F (t) = 1− exp

{
−
∫ t

0
λ(t)dt

}
.

Hence, a distribution function of a positive continuous random variable can be specified by
giving its hazard rate function. For instance, if a random variable has a linear hazard rate
function-that is, if

λ(t) = a + bt

then its distribution function is given by

F (t) = 1− e−at−bt2/2

and differentiation yields its density, namely,

f (t) = (a + bt)e−(at+bt2/2) t ≥ 0.

When a = 0, the preceding equation is known as the Rayleigh density function.
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The Gamma Distribution

A random variable is said to have a gamma distribution with parameters
(α, λ), λ > 0, α > 0, if its density function is given by

f (x) =

{
λe−λx (λx)α−1

Γ(α) x ≥ 0

0 x < 0

where Γ(α), called the gamma function, is defined as

Γ(α) =

∫ ∞
0

e−yyα−1dy .

Integration of Γ(α) by parts yields

Γ(α) = −e−yyα−1|∞0 +

∫ ∞
0

e−y (α− 1)yα−2dy

= (α− 1)

∫ ∞
0

e−yyα−2dy

= (α− 1)Γ(α− 1).

(9)

P. Sam Johnson Continuous Random Variables 65/106



Other Continuous Distributions

For integral values of α, say, α = n, we obtain, by applying Equation 9
repeatedly,

Γ(n) = (n − 1)Γ(n − 1)

= (n − 1)(n − 2)Γ(n − 2)

= · · ·
= (n − 1)(n − 2) · · · 3 · 2Γ(1)

Since Γ(1) =
∫∞

0 e−x dx = 1, it follows that, for integral values of n,

Γ(n) = (n − 1)!
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Other Continuous Distributions

When α is a positive integer, say, α = n, the gamma distribution with
parameters (α, λ) often arises, in practice as the distribution of the
amount of time one has to wait until a total of n events has occurred.

The amount of time one has to wait until a total of n events has occurred
will be a gamma random variable with parameters (n, λ).

To prove this, let Tn denote the time at which the nth event occurs, and
note that Tn is less than or equal to t if and only if the number of events
that have occurred by time t is at least n. That is, with N(t) equal to the
number of events in [0, t],
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Other Continuous Distributions

P{Tn ≤ t} = P{N(t) ≥ n} =
∞∑
j=n

P{N(t) = j} =
∞∑
j=n

e−λt(λt)j

j!

where the final identity follows because the number of events in [0, t] has
a Poisson distribution with parameter λt. Differentiation of the preceding
now yields the density function of Tn :

f (t) =
∞∑
j=n

e−λt j(λt)j−1λ

j!
−
∞∑
j=n

λe−λt(λt)j

j!

=
∞∑
j=n

λe−λt(λt)j−1

j − 1!
−
∞∑
j=n

λe−λt(λt)j

j!

=
λe−λt(λt)n−1

(n − 1)!
.
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Other Continuous Distributions

Hence, Tn has the gamma distribution with parameters (n, λ). (This
distribution is often referred to in the literature as the n-Erlang
distribution.) Note that when n = 1, this distribution reduces to the
exponential distribution.

The gamma distribution with λ = 1
2 and α = n/2, n a positive integer, is

called the X 2
n (read “chi-squared”) distribution with n degrees of freedom.

The chi-squared distribution often arises in practice as the distribution of
the error involved in attempting to hit a target in n-dimensional space
when each coordinate error is normally distributed.

P. Sam Johnson Continuous Random Variables 69/106



Example

Example 30.

Let X be a gamma random variable with parameters α and λ. Calculate
(a) E [X ] and (b)Var(X ).

Solution: (a)

E [X ] =
1

Γ(α)

∫ ∞
0

λxe−λx(λx)α−1dx

=
1

λΓ(α)

∫ ∞
0

λe−λx(λx)αdx =
Γ(α + 1)

λΓ(α)
=
α

λ
by Equation (9).

By first calculating E [X 2], we can show that

Var(X ) =
α

λ2
.
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The Weibull Distribution

The Weibull distribution is widely used in engineering practice due to its
versatility. It was originally proposed for the interpretation of fatigue data,
but now its use has been extended to many other engineering problems. In
particular, it is widely used in the field of life phenomena as the
distribution of the lifetime of some object, especially when the “weakest
link” model is appropriate for the object.

That is, consider an object consisting of many parts, and suppose that the
object experiences death (failure) when any of its parts fail. It has been
shown (both theoretically and empirically) that under these conditions a
Weibull distribution provides a close approximation to the distribution of
the lifetime of the item.
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The Weibull Distribution

The Weibull distribution function has the form

F (x) =


0 x ≤ v

1− exp

{
−
(
x−v
α

)β}
x > v .

(10)

A random variable whose cumulative distribution function is given by
Equation (10) is said to be a Weibull random variable with parameters
v , α, and β. Differentiation yields the density:

F (x) =


0 x ≤ v

β
α

(
x−v
α

)β−1
exp

{
−
(
x−v
α

)β}
x > v .

P. Sam Johnson Continuous Random Variables 72/106



The Cauchy Distribution

A random variable is said to have a Cauchy distribution with parameter
θ,−∞ < θ <∞, if its density is given by

f (x) =
1

π

1

1 + (x − θ)2
−∞ < x <∞.

Example 31.

Suppose that a narrow-beam flashlight is spun around its center, which is
located a unit distance from the x-axis. Consider the point X at which the
beam intersects the x-axis when the flashlight has stopped spinning. (If
the beam is not pointing toward the x-axis, repeat the experiment.)
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Cauchy Distribution

As indicated in the above figure, the point X is determined by the angle θ
between the flashlight and the y-axis, which, from the physical situation,
appears to be uniformly distributed between −π/2 and π/2. The
distribution function of X is thus given by

F (x) = P{X ≤ x}
= P{tan θ ≤ x}
= P{θ ≤ tan−1 x}

=
1

2
+

1

π
tan−1 x

where the last equality follows since θ, being uniform over (−π/2, π/2),
has distribution

P{θ ≤ a} =
a− (−π/2)

π
=

1

2
+

a

π
, −π

2
< a <

π

2
.
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Cauchy Distribution

Hence, the density function of X is given by

f (x) =
d

dx
F (x) =

1

π(1 + x2)
, −∞ < x <∞

and we see that X has the Cauchy distribution.1

1That d
dx
(tan−1 x) = 1/(1 + x2) can be seen as follows: If y = tan−1 x , then

tan y = x , so

1 =
d

dx
(tan y) =

d

dy
(tan y)

dy

dx
=

d

dy

(
sin y

cos y

)
dy

dx
=

(
cos2 y + sin2 y

cos2 y

)
dy

dx

or
dy

dx
=

cos2 y

sin2 y + cos2 y
=

1

tan2 y + 1
=

1

x2 + 1
.
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The Beta Distribution

A random variable is said to have a beta distribution if its density is given
by

f (x) =

{
1

B(a,b)x
a−1(1− x)b−1 0 < x < 1

0 otherwise

where

B(a, b) =

∫ 1

0
xa−1(1− x)b−1dx .

The beta distribution can be used to model a random phenomenon whose
set of possible values is some finite interval [c , d ] - which, by letting c
denote the origin and taking d − c as a unit measurement, can be
transformed into the interval [0, 1].
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The Beta Distribution

When a = b, the beta density is symmetric about 1
2 , giving more and more

weight to regions about 1
2 as the common value a increases. (See figure on

the left.) When b > a, the density is skewed to the left (in the sense that
smaller values become more likely); and it is skewed to the right when
a > b. (See figure on the right.)
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The Beta Distribution

The relationship

B(a, b) =
Γ(a)Γ(b)

Γ(a + b)
(11)

can be shown to exist between

B(a, b) =

∫ 1

0
xa−1(1− x)b−1dx

and the gamma function.

Upon using Equation (9) along with the identity (11), it is an easy matter
to show that if X is a beta random variable with parameters a and b, then

E [X ] =
a

a + b
, Var(X ) =

ab

(a + b)2(a + b + 1)
.
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The Distribution of a Function of a Random Variable

Often, we know the probability distribution of a random variable and are
interested in determining the distribution of some function of it.

For instance, suppose that we know the distribution of X and want to find
the distribution of g(X ). To do so, it is necessary to express the event
that g(X ) ≤ y in terms of X being in some set. We illustrate with the
following examples.
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Example

Example 32.

Let X be uniformly distributed over (0, 1). We obtain the distribution of
the random variable Y , defined by Y = X n, as follows: For 0 ≤ y ≤ 1,

FY (y) = P{Y ≤ y}
= P{X n ≤ y}
= p{X ≤ y1/n}
= FX (y1/n)

= y1/n.

For instance, the density function of Y is given by

fY (y) =

{
1
ny

1/n−1 0 ≤ y ≤ 1

0 otherwise
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Example

Example 33.

If X is a continuous random variable with probability density fX , then the
distribution of Y = X 2 is obtained as follows: For y ≥ 0,

FY (y) = P{Y ≤ y}
= P{X 2 ≤ y}
= P{P −√y ≤ X ≤ √y}
= FX (

√
y)− FX (−√y).

Differentiation yields

fY (y) =
1

2
√
y

[fx(
√
y) + fX (−√y)].
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Example

Example 34.

If X has a probability density fX , then Y = |X | has a density function that
is obtained as follows: For y ≥ 0,

FY (y) = P{Y ≤ y}
= P{|X | ≤ y}
= P{−y ≤ X ≤ y}
= FX (y)− FX (−y).

Hence, on differentiation, we obtain

fY (y) = fX (y) + fX (−y), y ≥ 0.
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Theorem

The method employed in Examples (32) through (34) can be used to
prove the following theorem.

Theorem 35.

Let X be a continuous random variable having probability density function
fx. Suppose that g(x) is a strictly monotonic (increasing or decreasing),
differentiable (and thus continuous) function of x. Then the random
variable Y defined by Y = g(X ) has a probability density function given by

fY (y) =

{
fX [g−1(y)]

∣∣∣ ddy g−1(y)
∣∣∣ if y = g(x) for some x

0 if y 6= g(x) for all x

where g−1(y) is defined to equal that value of x such that g(x) = y.

We shall prove Theorem (35) when g(x) is an increasing function.
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Proof

Suppose that y = g(x) for some x . Then, with Y = g(X ),

FY (y) = P{g(X ) ≤ y}
= P{X ≤ g−1(y)}
= FX (g−1(y)).

Differentiation gives

fY (y) = fX (g−1(y))
d

dy
g−1(y)

which agrees with Theorem (35), since g−1(y) is nondecreasing, so its
derivative is nonnegative.

When y 6= g(x) for any x , then FY (y) is either 0 or 1, and in either case
fY (y) = 0.
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Example

Example 36.

Let X be a continuous nonnegative random variable with density function
f , and let Y = X n. Find fY , the probability density function of Y .

Solution. If g(x) = xn, then g−1(y) = y1/n and d
dy {g

−1(y)} = 1
ny

1/n−1.

Hence, from Theorem (35), we obtain

fY (y) =
1

n
y1/n−1f (y1/n).

For n = 2, this gives

fY (y) =
a

2
√
y
f (
√
y)

which (since X ≥ 0) is in agreement with the result of Example (33).

P. Sam Johnson Continuous Random Variables 85/106



Exercise

Exercise 37.

Let X be a random variable with probability density function

f (x) =

{
c(1− x2) −1 < x < 1

0 otherwise.

1. What is the value of c?

2. What is the cumulative distribution function of X?

Solution :

1. c
1∫
−1

(1− x2)dx = 1 =⇒ c = 3/4.

2. F (x) = 3
4

x∫
−1

(1− x2)dx = 3
4

(
x − x3

3 + 2
3

)
, −1 < x < 1.
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Exercise

Exercise 38.

A system consisting of one original unit plus a spare can function for a
random amount of time X . If the density of X is given (in units of
months) by

f (x) =

{
Cxe−x/2 x > 0

0 x ≤ 0

what is the probability that the system functions for at least 5 months?

Solution :
∫∞

0 xe−x/2dx = −2xe−x/2 − 4e−x/2. Hence,

c

∫ ∞
0

xe−x/2dx = 1 =⇒ c = 1/4.

P{X > 5} =
1

4

∞∫
5

xe−x/2dx =
1

4
[10e−5/2 + 4e−5/2] =

14

4
e−5/2.
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Exercise

Exercise 39.
The probability density function of X , the lifetime of a certain type of electronic device
(measured in hours), is given by

f (x) =

{
10
x2 x > 10

0 x ≤ 10.

(a) Find P{X > 20}.
(b) What is the cumulative distribution function of X?

(c) What is the probability that, of 6 such types of devices, at least 3 will function for at least
15 hours? What assumptions are you making?

Solution :

(a)
∞∫
20

10
x2 dx = −10

x

∞∫
20

= 1/2.

(b) F (y) =
y∫

10

10
x2 dx = 1− 10

y
, y > 10. F (y) = 0 for y < 10.

(c)
6∑

i=3

(
6
i

)(
2
3

)i ( 1
3

)6−i
since F (15) = 10

15
. Assuming independence of the events that the

devices exceed 15 hours.
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Exercise

Exercise 40.
Compute E [X ] if X has a density function given by

(a) f (x) =

{
1
4
xe−x/2 x > 0

0 otherwise
;

(b) f (x) =

{
c(1− x2) −1 < x , 1

0 otherwise
;

(c) f (x) =

{
5
x2 x > 5

0 x ≤ 5
.

Solution :

(a) E [X ] = 1
4

∞∫
0

x2e−x/2dx = 2
∞∫
0

y2e−ydx = 2Γ(3) = 4.

(b) By symmetry of f (x) about x = 0, E [X ] = 0.

(c) E [X ] =
∞∫
5

5
x
dx =∞.
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Exercise

Exercise 41.

The density function of X is given by

f (x) =

{
a + bx2 0 ≤ x ≤ 1

0 otherwise.

If E [X ] = 3
5 , find a and b.

Solution :
1∫

0

(a + bx2)dx = 1 or a + b
3 = 1.

1∫
0

x(a + bx2)dx = 3
5 or a

2 + b
4 = 3/5.

Hence, a = 3
5 , b = 6

5 .
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Exercise

Exercise 42.
Trains headed for destination A arrive at the train station at 15-minute intervals starting at 7
A.M., whereas trains headed for destination B arrive at 15-minute intervals starting at 7 : 05
A.M.

(a) If a certain passenger arrives at the station at a time uniformly distributed between 7 and
8 A.M. and then gets on the first train that arrives, what proportion of time does he or
she go to destination A?

(b) What if the passenger arrives at a time uniformly distributed between 7 : 10 and 8 : 10
A.M.?

Solution :

(a)

P{goes to A} = P{5 < X < 15 or 20 < X < 30 or 35 < X < 45 or 50 < X < 60}.
= 2/3 since X is uniform (0, 60).

(b) same answer as in (a).
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Exercise

Exercise 43.
If X is a normal random variable with parameters µ = 10 and σ2 = 36, compute

(a) P{X > 5};
(b) P{4 < X < 16};
(c) P{X < 8};
(d) P{X < 20};
(e) P{X > 16}.

Solution :

1. Φ(.8333) = .7977

2. 2Φ(1)− 1 = .6827

3. 1− Φ(.3333) = .3695

4. Φ(1.6667) = .9522

5. 1− Φ(1) = .1587
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Exercise

Exercise 44.
If 65 percent of the population of a large community is in favor of a proposed rise in school
taxes, approximate the probability that a random sample of 100 people will contain

(a) at least 50 who are in favor of the proposition;

(b) between 60 and 70 inclusive who are in favor;

(c) fewer than 75 in favor.

Solution : Let X denote the number in favor. Then X is binomial with mean 65 and standard
deviation

√
65(.35) ≈ 4.77. Also let Z be a standard normal random variable.

(a) P{X ≥ 50} = P{X ≥ 49.5} = P{X − 65}/4.77 ≥ −15.5/4.77
≈ P{Z ≥ −3.25} ≈ .9994

(b) P{59.5 ≤ X ≤ 70.5} ≈ P{−5.5/4.77 ≤ Z ≤ 5.5/4.77}
= 2P{Z ≤ 1.15} − 1 ≈ .75

(c) P{X ≤ 74.5} ≈ P{Z ≤ 9.5/4.77} ≈ .977
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Exercise

Exercise 45.

Suppose that the height, in inches, of a 25-year-old man is a normal
random variable with parameters µ = 71 and σ2 = 6.25. What percentage
of 25-year-old men are over 6 feet, 2 inches tall? What percentage of men
in the 6-footer club are over 6 feet, 5 inches?
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Exercise

Exercise 46.
The lifetimes of interactive computer chips produced by a certain semiconductor manufacturer
are normally distributed with parameters µ = 1.4× 106 hours and σ = 3× 105 hours. What is
the approximate probability that a batch of 100 chips will contain at least 20 whose lifetimes are
less than 1.8× 106?

Solution : With C denoting the life of a chip, and φ the standard normal distribution function
we have

P{C < 1.8× 106} = φ

(
1.8× 106 − 1.4× 106

3× 105

)
= φ(1.33)

= .9082.

Thus, if N is the number of the chips whose life is less than 1.8× 106 then N is a binomial
random variable with parameters (100, .9082). Hence,

P{N > 19.5} ≈ 1− φ
(

19.5− 90.82

90.82(.0918)

)
= 1− φ(−24.7) ≈ 1.
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Exercise

Exercise 47.

In 10, 000 independent tosses of a coin, the coin landed on heads 5800
times. Is it reasonable to assume that the coin is not fair? Explain.

Solution :

P{X > 5, 799.5} = P

{
Z >

799.5√
2, 500

}
= P{Z > 15.99} = negligible.
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Exercise

Exercise 48.

The time (in hours) required to repair a machine is an exponentially
distributed random variable with parameter λ = 1

2 . What is

(a) the probability that a repair time exceeds 2 hours?

(b) the conditional probability that a repair takes at least 10 hours, given
that its duration exceeds 9 hours?

Solution :

(a) e−1

(b) e−1/2
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Exercise

Exercise 49.

Suppose that the life distribution of an item has the hazard rate function
λ(t) = t3, t > 0. What is the probability that

(a) the item survives to age 2?

(b) the item’s lifetime is between .4 and 1.4?

(c) a 1-year-old item will survive to age 2?

Solution :

(a) 1− F (2) = exp

[
−

2∫
0

t3dt

]
= e−4

(b) exp[−(.4)4/4]− exp[−(1.4)4/4]

(c) exp

[
−

2∫
1

t3dt

]
= e−15/4
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Exercise

Exercise 50.

If X is uniformly distributed over (−1, 1), find

(a) P{|X | > 1
2};

(b) the density function of the random variable |X |.

Solution :

(a) P{|X | > 1/2} = P{X > 1/2}+ P{X < −1/2} = 1/2

(b) P{|X | ≤ a} = P{−a ≤ X ≤ a} = a, 0 < a < 1.
Therefore, f|X |(a) = 1, 0 < a < 1.
That is, |X | is uniform on (0, 1).
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Exercise

Exercise 51.

If Y is uniformly distributed over (0, 5), what is the probability that the
roots of the equation 4x2 + 4xY + Y + 2 = 0 are both real?

Solution : For both roots to be real the discriminant (4Y )2 − 44(Y + 2)
must be ≥ 0. That is, we need that Y 2 ≥ Y + 2.

Now in the interval 0 < Y < 5.

Y 2 ≥ Y + 2 ⇐⇒ Y ≥ 2 and so

P{Y 2 ≥ Y + 2} = P{Y ≥ 2} = 3/5.
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Exercise

Exercise 52.

If X is an exponential random variable with parameter λ = 1, compute the
probability density function of the random variable Y defined by
Y = logX .

Solution :

FY (y) = P{logX ≤ y}
= P{X ≤ ey} = FX (ey )

fY (y) = fX (ey )ey = eye−e
y
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Exercise

Exercise 53.

If X is uniformly distributed over (0, 1), find the density function of
Y = eX .

Solution :

FY (y) = P{eX ≤ y}
= FX (log y).

fY (y) = fX (log y)
1

y
=

1

y
, 1 < y < e.
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Exercise

Exercise 54.

The standard deviation of X , denoted SD(X ), is given by

SD(X ) =
√

Var(X ).

Find SD(aX + b) if X has variance σ2.

Solution :

SD(aX + b) =
√
Var(aX + b) =

√
a2σ2 = |a|σ.
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Exercise

Exercise 55.
Let X be a random variable that takes on values between 0 and c. That is, P{0 ≤ X ≤ c} = 1.
Show that

Var(X ) ≤
c2

4
.

Solution : Since 0 ≤ X ≤ c, it follows that X 2 ≤ cX . Hence,

Var(X ) = E [X 2]− (E [X ])2 ≤ E [cX − (E [X ])2

= cE [X ]− (E [X ])2 = E [X ](c − E [X ])

= c2[α(1− α)] where α = E [X ]/c ≤ c2/4

where the last inequality first uses the hypothesis that P{0 ≤ X ≤ c} = 1 to calculate that

0 ≤ α ≤ 1 and then uses calculus to show that maximum
0≤α≤1

α(1− α) = 1/4.
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Exercise

Exercise 56.

If X is a beta random variable with parameters a and b, show that

E [X ] =
a

a + b
,

Var(X ) =
ab

(a + b)2(a + b + 1)
.

Solution : (X − a)/(b − a).
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